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Abstract 5 

In kinesiology research, fringe projection profilometry is used to measure 6 
the surface shape and profile of ex-vivo beating animal heart. Deformation 7 
of projected fringe pattern will be caused by non-flat shape of surface and 8 
thus used to reconstruct the surface. In this course project, multiple-layer 9 
neural network (MLNN) is used to recover the gradient information of the 10 
surface as an intermediate step of surface reconstruction. The MLNN is 11 
trained by the fringe intensity pattern and phase gradient information 12 
extracted from synthetic data set. Various evaluation experiments are made 13 
on both parameters of MLNN and the properties of synthetic data set. 14 

 15 

1 Introduction 16 
Back ground:  Surface reconstruction of ex-vivo beating animal heart is necessary in some 17 
kinesiology researches. Fringe projection profilometry provides a powerful tool to use 18 
non-contact method to measure the shape and profile of moving surface. In this system, 19 
collimated fringes (usually with sinusoidal intensity pattern) will be projected onto the target 20 
surface. Cameras would be placed from a different view angle. Deformation of fringe pattern 21 
will appear in the captured images and surface shape can be recovered from it. Fig. 1 22 
illustrates the set-up of fringe projection profilometry system and gives an example of fringe.  23 

 24 

    (a)                   (b)       25 

Figure 1: (a) Illustration of fringe projection profilometry (cited from [1]); (b) is an example 26 
of acquired fringe image 27 

Related works: Fourier Transform Profilometry (FTP) [2] considers the problem as a 28 
modulation and demodulation process, which can be solved by analysis on frequency 29 
domain. Similar to FTP, methods including wavelet based method[3], phase-locked 30 
method[4] are also used in this application. All these methods take ‘global’ view of this 31 
problem and try to find the mapping of the whole fringe image and shape of the object. 32 

In contrast to the above mentioned to other methods, multiple-layer neural network has been 33 
proposed to consider this problem ‘locally’ by Cuevas et al. [5]. This course project uses the 34 
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idea from [5], while have differences in implementation. 35 

Description of the problem: Fig. 1 (b) shows an example of acquired fringe image. Intensity 36 
of pixel ሺݔ,  ሻ in this image can be expressed as Fourier series. 37ݕ

          ݃ሺݔ, ሻݕ ൌ ,ݔሺݎ  ሻݕ ෌ ߨሺ݆݊ሺ2 ݌ݔ௡݁ܣ ௫݂ݔ ൅ ߨ2 ௬݂ݕ ൅ ߶ሺݔ, ሻሻሻݕ
ஶ

௡ୀିஶ
        (1) 38 

Where the projected fringe pattern is represent by term 2ߨ ௫݂ݔ ൅ ߨ2 ௬݂ݕ, and the surface 39 
shape information is contained in term ߶ሺݔ, ,ݔሻ. To recover the surface, mapping from ሺݕ  ሻ 40ݕ
to ߶ሺݔ,  ሻ is desired, and this need to be solved from the equation (1). The problem is that 41ݕ
߶ሺݔ, ሻݕ  is a ‘global’ property which does not only rely on the local fringe pattern 42 
information. Gradient of ߶ሺݔ,  ሻ, however, can be determined without knowing information 43ݕ
in pixels outside of the window. If the phase gradient can be acquired, the surface 44 
reconstruction can be done afterwards.  45 

In this course project, finding the relationship between gradient of ߶ሺݔ,  ሻ and a local 46ݕ
window at pixel ሺݔ, ሻݕ  is considered to be a regression problem. Efforts on training 47 
multiple-layer neural network (MLNN) to build this mapping are made. Also, the algorithm 48 
is evaluated with various experiments. 49 
 50 
2 Mult iple-Layer Neural  Network   51 

The multiple-layer neural network (MLNN) is used to solve regression problems which are 52 
hard to find an explicit model, which is suitable for the mapping between local fringe pattern 53 
and phase gradient value. Fig. 2 illustrates the input and output of MLNN in this application.  54 

 55 
Figure 2: Input and output of MLNN (Fig. cited from [5]) 56 

The input of the MLNN is the intensity value of every pixel inside a local window. The 57 
output of the MLNN is the x and y direction phase gradient. For example, if the local 58 
windows size is chosen to be 5x5, the MLNN will have 25 inputs for each pixel on the fringe 59 
image. The 2 outputs of the MLNN is the x and y direction phase gradient at the 60 
corresponding pixel. In this application, a 2-layer MLNN is used. Parameters of the MLNN 61 
are discussed in experiment section. 62 
 63 
3 Experiments  64 

Synthetic data is used in these experiments because of unavailability of real data. Training 65 
data and test data are extracted from different surfaces with similar shape and are illustrated 66 
in Fig. 3. Variations in fringe direction, wavelength, noise, illumination nonuniformity (IN) 67 
and test data surface shape will be made in different specific experiments. If unspecified, the 68 
fringe image is clean (without noise and illumination nouniformity), has fixed direction and 69 
20-pixel wavelength sinusoidal fringe on the image.  70 

 71 
Figure 3: example of data used in MLNN training. (a) is the training fringe image; (b) is the 72 
training phase surface; (c) is the training phase gradient in vertical direction; (d) is the training 73 
phase gradient in horizontal direction; (e) is the test fringe image; (f) is the test phase surface; (g) 74 
is the test phase gradient in vertical direction; (h) is the test phase gradient in horizontal direction. 75 
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For the MLNN implementation, Netlab [6] package is used with slightly modification.  76 

In the following experiments, both parameters of the neural network and properties of the 77 
image are considered. The MLNN method is also compared with the Fourier Transform 78 
Profilometry (FTP) method. Due to large amount of tunable parameters and properties, the 79 
following experiments are far from complete. Parameters and properties that have not been 80 
experimented will be briefly discussed. 81 

 82 
3 .1   Exper iments  on  MLNN Parameters  83 
3 .1 .1   Tunable  parameters  wi thout  exper iments  84 

Optimization method in following experiments is scaled conjugate gradient descent (SCG). 85 
However, determination of the optimal optimization method needs more comprehensive 86 
evaluations. The termination condition for the training process using SCG optimization is 87 
4000 iterations over the whole training data. Activation function of hidden layer is set as the 88 

hyperbolic tangent function tanhሺxሻ ൌ ୣ౮ିୣష౮

ୣ౮ାୣష౮. Activation function of output layer is chosen 89 
as linear function, due to the regression problem [6].While logistic sigmoid function is 90 
possible for hidden layer, and sigmoid and softmax function are possible for output layer, the 91 
evaluation of their performance is left as a future work. 92 
 93 
3 .1 .2  Exper iments  on  d i f f erent  number o f  h idden  neurons  94 

5 fold cross validation is done on MLNN with different number of hidden neurons. Here, a 95 
5x5 local window is fixed, which means that the number of input is 25. The error-iteration 96 
plots in Fig. 4 (a) and error-number of neurons plots in Fig. 4(b) shows that number of 97 
hidden neurons does NOT have a significant influence on the accuracy of the algorithm.  98 
 99 

 100 
      (a)                           (b) 101 

  102 
  (c)                             (d) 103 

Figure 4: cross validation performance of MLNN. (a) is the error-iteration plots of trained MLNNs 104 
with different number of hidden neurons; (b) is the error-iteration plots of trained MLNNs with 105 

different number of hidden neurons; (c) and (d) the error comparisons after 4000 iterations 106 
 107 
3 .1 .3   Exper iments  on  d i f f erent  loca l  w indow s i ze  108 

Choice of local window size is a tradeoff between information amount and ‘locality’. 5 fold 109 
cross validation are also done for MLNN with local window size. Square local windows with 110 
size from 5 to 13 are tested and shown in Fig. 4 (b) and (d). In the 5 to 13 range, large 111 
window size will result in small errors. However, due to consideration of execution time, 112 



window size is fixed to be 5x5 in following experiments. MLNN with different window size 113 
will be tested with more experiment in the future.  114 
 115 
3 .2   Exper iments  on  Data  Propert i es  116 

 117 
Figure 5: Learning result of clean test and training fringe image. (a) and (b) is the target vertical 118 

and horizontal phase gradient respectively; (b) and (d)is the vertical and horizontal phase gradient 119 
calculated by trained MLNN respectively 120 

 121 

Fig. 5 shows the learning result using ‘clean’ fringe image as the training and test input. 122 
Clean means no illumination nonuniformity (IN) and no noise on the fringe image. The value 123 
of the MLNN output, the phase gradient, lies in [-0.26 0.26]. In the following experiments, 124 
root mean square (RMS) error is used. The RMS error corresponding to results shown in Fig. 125 
5 is 0.012. 126 

The data has many properties, which cannot be evaluated completely in this report. For 127 
example, influence of shape variance and fringe pattern other than sinusoidal fringe are not 128 
evaluated in this course project. 129 
 130 
3 .2 .1   Exper iments  on  no i se  and  i l luminat ion  131 

In this experiment, speckle noise and illumination nonuniformity (IN) are added to the fringe 132 
image to make it dirty. Fig. 2 (e) is an example of dirty fringe image. 133 

First experiment use clean training data and dirty test data with various noise and IN levels. 134 
As shown in Fig. 6 (a), the algorithm is sensitive to both IN and noise, and especially very 135 
sensitive to noise. Fig. 6 (b) shows the errors of MLNN trained by ‘dirty’ training data which 136 
have same noise and IN level with test data. The algorithm is much less sensitive to IN, but 137 
still quite sensitive to noise. For comparison, the Fourier Transform Profilometry (FTP) 138 
method is also evaluated and shown in Fig. 6 (c). Different from MLNN method, FTP 139 
method is more sensitive to IN than noise. 140 

Analysis of performance different between MLNN and FTP: In FTP method, after Fourier 141 
transform of the fringe image, if the frequency spectrum of useful information overlaps with 142 
illumination spectrum, large error would appear. MLNN is able to compensate for the 143 
constant illumination pattern, but couldn’t get accurate prediction at the presence of random 144 
noise. Therefore, if MLNN is used to process real image with considerable noise, proper 145 
denoising method need to be used. 146 

 147 
3 .2 .2   Exper iment  on  f r inge  d irec t ion  and  w ave length   148 

Fringe direction and wavelength changes are also considered. In this experiment, input of test 149 
data, the fringe images are modified such that it has different fringe wavelength and fringe 150 
direction. The result is shown in Fig. 6 (d). It shows that large direction and wavelength 151 
difference will result in large error. However, this information is not enough to evaluate local 152 
performance. Comparison in finer scale will be done in the future. 153 
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 157 
                        (c)                           (d)  158 
 159 
Figure 6: error images of experiments on data set properties. (a) experiment on clean training and 160 

dirty test data; (b) experiment on same level dirty training and test data; (c) experiment of FTP 161 
method on dirty test data; (d) experiment on data with different fringe direction and wavelength 162 

 163 
4 Conclusion 164 

In this course project, multiple-layer neural network (MLNN) is applied to recover phase 165 
gradient in fringe projection profilometry techniques. The mapping between local fringe 166 
pattern and phase gradient is found by training a MLNN. The inputs of the MLNN are the 167 
pixel values in the local window in fringe image and the outputs are the x and y phase 168 
direction gradients. Various tests on both parameters of the MLNN and properties of data are 169 
experimented. MLNN performance is not significant related to number of hidden neurons 170 
give fixed number of inputs. MLNN has higher accuracy with larger size local window for 171 
input under certain range, but due to time consideration, performance test of MLNN with 172 
large window size on dirty data set is left as a future work. MLNN is sensitive to noise and 173 
less sensitive to illumination nonuniformity (IN), which implies that proper denoising 174 
method need to be chosen in real application. If direction or wavelength difference in test 175 
data is large, the algorithm will have large error, but error with small changes directions and 176 
wavelength need to be included in future work.  177 
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