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Abstract

Junctional Ectopic Tachycardia (JET) is a cardiac arrhythmia which occurs immediately

after open heart surgery in young children. In specific populations, JET has extremely high

incidence, of up to 50%. There has not been a specific mechanism elucidated by clinical data

or basic science. As a widely used vertebrate cardiovascular biological model, zebrafish heart

is being studied to reveal the leading reasons of JET. Optical mapping (OM) techniques

provide an effective approach to observe cardiac functionality by recording zebrafish heart

action potential propagation. However, processing of vast amount of OM data also poses

challenges on fast and accurate processing, measurement and interpretation.

This thesis presents novel automated pipelines for processing zebrafish heart OM data

and identifying pacemaking regions from it through signal analysis. We first introduce a

preprocessing pipeline for enhancing very low signal-to-noise ratio original OM data, which

involves spatial-temporal smoothing, cycle averaging, drifting correction and scaling. After

that, we present a computer assisted OM signal manually labeling pipeline, which reduces

the manual workload significantly by clustering spatially adjacent similar signals. Further-

more, we make physiologically relevant measurements on OM data and do statistical analysis

comparing different labeled regions. Finally, we propose a two-step signal clustering based

method to divide atrium into different functional regions followed by pacemaking region

identification. We present the formulation of these methods and discuss their validity and

performance in various aspects. The work presented in this thesis could lead to significantly

faster and larger scaled experimentation in optical mapping related physiology research.

iv



Acknowledgments

First, I would like to thank my senior supervisor Dr. Mirza Faisal Beg, who is an excellent

researcher, supervisor and teacher. He supports my research interests, offers me various

research opportunities and gives me good suggestions. Working with him is enjoyable.

I would also like to thank my supervisors Dr. Marinko Sarunic and Dr. Glen Tibbits

for their crucial directions and helpful suggestions during my work and study in the past

two years. I thank Dr. Jie Liang for spending time to read my thesis and be my defence

examiner. I thank Dr. John Jones for chairing my defence in spite of his busy schedule.

Next, I would like to thank my collaborators Dr. Eric Lin and Amanda Ribeiro for their

work on data acquisition and help on understanding physiology knowledge. Especially, Eric

is a good mentor, who is supportive and flexible to me, at the same time keeps the right

direction. It is pleasant to work with them.

I wish to thank all my colleagues and friends in Medical Image Analysis Lab (MIAL)

and Biomedical Optics Research Group (BORG): Evgeniy Lebed, Pradeep Reddy Ramana,

Sieun Lee, Amanmeet Garg, Andy Bo Wu, Wenqi Sun, Jingyun Chen, Michelle Cua, Yifan

Jian, Jing Xu, Mei Young, Lukas Merhi, Ali Issaei and Lukasz Szczygiel for their gener-

ous help, sharing and the wonderful time we had. Particularly, I thank Evgeniy for thesis

proofreading and suggestions. I would also like to thank all the other colleagues of Med-

ical Image Computing and Analysis (MICA) Lab for the interesting discussions and the

memorable experience with you guys.

Finally, I would like to thank my family. I thank my parents Shuli Ding and Yanhua

Xie, as well as my parents-in-law Yanmian Liu and Jianzhong Wang for their unconditional

love, support, encouragement and understanding. I thank Jingya Wang, my wife and best

friend, for her love, which is beyond words.

v



Contents

Approval ii

Partial Copyright License iii

Abstract iv

Acknowledgments v

Contents vi

List of Tables ix

List of Figures x

List of Abbreviations xii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Zebrafish heart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Optical mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 Identification of pacemaking region . . . . . . . . . . . . . . . . . . . . 4

1.2 Research problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Primary contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Publications arising from the thesis . . . . . . . . . . . . . . . . . . . . . . . . 6

vi



2 Data Acquisition and Preprocessing 8

2.1 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Characteristics of optical mapping zebrafish heart data . . . . . . . . . . . . . 9

2.3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Full length signal enhancement . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Cycle averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Manual Identification 22

3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Pre-labeling Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.2 Manual Labeling Process . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Results of manual identification . . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 Ranking data according to manual label . . . . . . . . . . . . . . . . . 26

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Measurements and Analysis 31

4.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.2 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.1 Examples of measurements . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.2 P-value of measurements . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.3 Data variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.4 Correlation between slope and temperature . . . . . . . . . . . . . . . 36

4.3 Conclusion and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Automatic Identification 42

5.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1.1 Thresholding based on slope value . . . . . . . . . . . . . . . . . . . . 42

5.1.2 Two-step clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2.1 Evaluation criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

vii



5.2.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3.1 Examples of different detection result . . . . . . . . . . . . . . . . . . 48

5.3.2 Quantitative performance analysis . . . . . . . . . . . . . . . . . . . . 48

5.4 Conclusion and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 Conclusion 57

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2 Primary contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.3.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.3.2 Manual labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.3.3 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.3.4 Automatic identification . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Appendix A Diastolic Slope Ending Point 61

Bibliography 63

viii



List of Tables

4.1 Statistics of activation time and slow slope value in terms of percentage of

HA = 1 and average p value . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1 DSC comparison of different experimented methods . . . . . . . . . . . . . . 55

ix



List of Figures

1.1 Zebrafish heart image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Optical mapping zebrafish heart image and typical signals . . . . . . . . . . . 9

2.2 Preprocessing pipeline illustration . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Illustration of action potential propagation after preprocessing . . . . . . . . 14

2.4 Illustration of action potential propagation under 18 ◦C . . . . . . . . . . . . 15

2.5 Illustration of action potential propagation under 28 ◦C . . . . . . . . . . . . 16

2.6 Illustration of action potential propagation under 34 ◦C . . . . . . . . . . . . 17

2.7 Acquiring warping functions from image cosine similarity . . . . . . . . . . . 19

2.8 Use acquired warping functions on individual signal . . . . . . . . . . . . . . 20

2.9 The preprocessing pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Graphical user interface for manual labeling . . . . . . . . . . . . . . . . . . . 25

3.2 Result of the first stage of clustering . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 The color coded area partition after manual labeling . . . . . . . . . . . . . . 28

3.4 More image and signal labeling results from different zebrafish hearts . . . . . 29

3.5 The normal coefficient and nodal coefficient for different datasets . . . . . . . 30

4.1 Measurements on single signal . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Example of Measurement maps . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Boxplots of p-values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Example showing slope value variability . . . . . . . . . . . . . . . . . . . . . 37

4.5 Boxplots of slope value of temperature on NN . . . . . . . . . . . . . . . . . . 38

4.6 Boxplots of slope value of temperature on NN + NC . . . . . . . . . . . . . . 39

4.7 Signals and slope values over temperatures . . . . . . . . . . . . . . . . . . . . 40

x



5.1 Procedure of performing discretization of derivative . . . . . . . . . . . . . . . 44

5.2 Examples of nodal region identification based on slope value . . . . . . . . . . 49

5.3 Examples of nodal region identification based on clustering . . . . . . . . . . 50

5.4 More examples of nodal region identification based on RFCM-DoD-Kmeans . 51

5.5 Boxplot showing DSC of nodal region detection using slope value . . . . . . . 52

5.6 BPDSC boxplots of pacemaking region detection using clustering methods . . 53

5.7 DSC boxplots of fully automated pacemaking region detection using cluster-

ing methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

A.1 Illustration of calculating diastolic slope ending point. . . . . . . . . . . . . . 61

xi



List of Abbreviations

JET Junctional Ectopic Tachycardia

OM optical mapping

SAN sinoatrial node

SNR signal-to-noise ratio

Di Dataset i, where i is the dataset number

ROI region of interest

FCM fuzzy c-means

RFCM robust fuzzy c-means

AN normal atrial region

AC corrupted atrial region

NN normal nodal/pacemaking region

NC corrupted nodal/pacemaking region

NMC normal coefficient representing the percentage of identified uncorrupted area

NDC nodal coefficient representing the percentage of identified nodal region area

OT other unidentified region

DoD discretization of derivative

DSC Dice similarity coefficient

BPDSC best possible Dice similarity coefficient

xii



Chapter 1

Introduction

Junctional Ectopic Tachycardia (JET) [50] is a cardiac arrhythmia occurring immediately

following open heart surgery in young children. JET has extremely high incidence in specific

populations, yet its mechanism has not been elucidated by clinical data or by basic science.

Abnormality in cardiac pacemaker cells is one of the possible reasons that may cause JET

and is currently being studied by physiologists. To study the mechanism of JET, we use

zebrafish as animal model and observe its cardiac activity using optical mapping techniques.

Although pacemaker cells are able to be identified by histology, they are not visible from

optical mapping data or identifiable by eye when they are still alive and functioning. To

solve this problem, we need to develop methods that are able to identify pacemaker regions

from optical mapping data when the heart is still alive.

1.1 Background

1.1.1 Zebrafish heart

Zebrafish is one of the most successful biological models [40] for studying human physiol-

ogy and diseases. As a vertebrate cardiovascular model, the zebrafish heart has been used

extensively to study cardiac physiology, development and human cardiac disease [3] due its

genetic screenability, high permeability to small molecules and excellent developmental ob-

servability [40]. For example, scientists have created genetically encoded, optically controlled

pacemakers and used them to stimulate heart diseases including tachycardia, bradycardia,

atrioventricular blocks, and cardiac arrest [1]. Besides its flexible maneuverability and good

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Zebrafish heart image from [16]. The real scale of this photo is about 1∼2mm
by 1∼2mm.

observability, more importantly, compared to mouse and other small mammals, zebrafish

cardiac electrophysiology has been found to be considerably more representative of human

adult electrophysiology in various aspects including individual ionic currents, whole-heart

electrophysiology, drug responses and cardiac contractility [2, 24, 32, 31, 30, 42, 35].

The zebrafish heart is comprised of cells of different types, including nodal, atrial and

ventricular cells. Each of these cell types has distinct mechanical and electrical character-

istics that determine the heart’s ability to provide adequate blood flow to the rest of the

body. Accordingly, each cell type has a distinct action potential [39] waveform, a specific

time-dependent pattern of membrane depolarization that closely relates to its physiologi-

cal function. To understand the cardiac activity of zebrafish heart, we aim to identify the

location and measure relevant properties of these different regions, especially pacemaking

regions, in other words nodal regions. Figure 1.1 shows an image of excised zebrafish heart

[16] with labeled atrium, ventricle and bulbus.

1.1.2 Optical mapping

Traditionally, electrophysiology has been used to measure action potential value in various

biological tissues, by directly measuring voltage with microelectrodes in contact with bi-

ological tissues. More recently, optical mapping (OM) [12] techniques have been used to

study membrane potentials when microelectrodes encounter difficulties. In optical mapping,
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tissues are soaked in fluorescence voltage sensitive dye, which emits light with different spec-

trum under different voltages. Therefore, the emitted fluorescence change is directly related

to the transmembrane action potential. Utilizing this fact, the fluorescence intensities in a

given bandwidth can be recorded over time to reflect the temporal action potential changes.

Generally, optical mapping has three advantages over the traditional electrophysiology [40]:

• optical mapping is less affected by physical constraints

• optical mapping enables simultaneous multiple sites recording, which greatly increases

the spatial resolution

• optical mapping does not stimulate tissue, which may distort the action potential

Optical mapping in cardiac research

Optical mapping techniques have also been used extensively in cardiac research and proven

to be a successful tool in cardiovascular function and disease research [17, 12, 23, 9, 13].

Generally, having ex-vivo animal hearts immersed in solution with fluorescence voltage

sensitive dye, cardiac action potential waveforms are recorded as the intensity change in

different pixels. Each pixel contains a time series signal related to the actual action potential

of the corresponding location.

As cardiac activity involves both action potential propagation and physical contractile

motion, a single pixel in the recorded video does not always correspond to the same loca-

tion on the heart. This will introduce motion artifacts in the acquired signals. There are

three common methods [40] for dealing with motion artifacts in cardiac research: mechanical

restriction, pharmacological approaches and ratio metric imaging. For zebrafish heart, phar-

macological approaches and ratio metric imaging are commonly used, because mechanical

restriction is difficult due to the fragility of zebrafish heart. Recent comprehensive reviews

of optical mapping techniques can be found in [17, 12, 23].

Analysis of cardiac optical mapping data

The raw cardiac optical mapping data is usually noisy and not suitable for calculation of

different measurements. Existing common preprocessing approaches have been summarized

and introduced in [26], including spatial average filter, temporal average filter, temporal
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frequency domain filters, ensemble average and drifting removal. After preprocessing, dif-

ferent approaches have been used on cardiac optical mapping data to get various types of

measurements and analyses [26], including activation map, conduction velocity map, ac-

tion potential duration map, repolarization map, upstroke analysis, arrhythmia phase map

analysis, dominant frequency map analysis and etc. These are measurements on individual

pixels, which are then combined to give local and global information about cardiac activi-

ties. In addition, the functional properties acquired from processing optical mapping data

are combined with structural data to reveal cardiac structural-functional correlations [18].

For zebrafish heart, optical mapping data has not been extensively measured, probably

due to its small size, which causes several problems like small field of view, low resolution

and low signal-to-noise ratio. In previous work, voltage dynamics have been visualized and

activation maps have been manually drawn based on the visualization [8, 29, 47]. Manual

methods are not suitable for large dataset analyses and introduce rater bias and errors. This

motivates the need to develop automated methods.

1.1.3 Identification of pacemaking region

Among different types of heart regions, identification of pacemaking (or nodal) cells is of

particular interest. Unlike atrial and ventricular cells, nodal cells do not compose an individ-

ual chamber and are part of atrium. They act as pacemakers, which lead the depolarization

of whole heart, are responsible for the heart’s intrinsic rate and respond to extrinsic factors

that modulate heart rate [48].

Existing method for identification of pacemaking region in zebrafish heart

Previously, a few efforts have been made on detection of pacemaker in zebrafish heart. In

terms of functional analysis, pacemaker was identified as the earliest depolarization regions

on activation map in different developmental stages in [8]. In terms of molecular and struc-

tural anlayis, pacemaker of adult zebrafish heart was identified as a ring around the venous

pole [45] based on information from complex combinations of microscopic examination, gene

expression pattern reconstruction, reporter transgenics and electrophysiology.

These methods are complicated, expensive, time consuming and still needs to be val-

idated by other, equally-involved, independent methods. More importantly, as detection

methods they only provide approximate locations with qualitative descriptions.
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Necessity of developing new detection method based on optical mapping data

For relatively fast quantitative identification of pacemaking region, new identification meth-

ods solely based on optical mapping data need to be developed. There are five main reasons

for us to work on this:

• Previously proposed pacemaker locations need to be validated.

• Since anatomical structure is hard to identify in optical mapping data due to the

tissue transparency, even pacemaker location is known on the zebrafish heart. Thus,

it is hard to mark and track it in optical mapping data. Therefore, identification of

pacemaker location purely based on optical mapping data is desired.

• Accurate quantitative identification and localization of pacemaker are needed for pre-

cise local and global cardiac activity analysis.

• Since pacemaker location might change under different experimental conditions, we

need reliable methods to detect pacemaker under different conditions, and even with

disappearance, moving and multiple sites of nodal regions.

• Most importantly, detection methods need to be automated for high throughput ex-

periments, which enables the utilization of the biological advantages of zebrafish.

1.2 Research problems

To achieve methods with desired properties described in Section 1.1.3, we have several

difficulties to overcome and problems to solve:

• How to enhance the low signal-to-noise (SNR) ratio and low dynamic range data, but

still keeping the necessary characteristics of the signal?

• What properties does pacemaking region have? How are they different from other

regions?

• How do we perform computer assisted manual identification on optical mapping data?

• How do we automate the detection of pacemaking regions?



CHAPTER 1. INTRODUCTION 6

1.3 Primary contributions

In order to solve the above mentioned research problems, this thesis presents the following

contributions on identification of optical mapped zebrafish heart.

• A novel pipeline is proposed and implemented for preprocessing low SNR raw zebrafish

optical mapping data.

• A novel, fast, manual identification pipeline is proposed and implemented.

• Physiologically measurements are done and statistically analyzed.

• Novel automatic detection methods are proposed and validated by manual identifica-

tion.

1.4 Organization of the thesis

This thesis is organized into the following chapters, focusing on the primary contributions:

• Chapter 2 describes the data acquisition method, OM data characteristics, and pre-

processing pipeline.

• Chapter 3 discusses the manual identification process and results.

• Chapter 4 presents the signal measurements and their statistical analysis.

• Chapter 5 presents slope value based pacemaker identification method and automatic

signal grouping method. These methods are also evaluated using the manually labeled

data.

• Chapter 6 concludes the thesis, summarize the primary contributions and discuss

future works.

1.5 Publications arising from the thesis

Several journal and conference publications are expected to be arising from the thesis.

Among them, one conference paper has been accepted:
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Weiguang Ding, Eric Lin, Amanda Ribeiro, Marinko Sarunic, Glen F. Tibbits, and Mirza

Faisal Beg, “On Identification of Sinoatrial Node in Zebrafish Heart Based on Functional

Time Series from Optical Mapping”, 35th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBC), July 2013

This paper describes contents from Chapter 5.



Chapter 2

Data Acquisition and

Preprocessing

2.1 Data acquisition

Optical mapping (OM) data acquisition was performed by our colleagues in Department

of Biomedical Physiology and Kinesiology, Simon Fraser University. The process is briefly

introduced below.

We acquired datasets from 5 individual experiments using different hearts with similar

procedure. We numbered them as Dataset 1 to 5 (D 1 to 5) corresponding to their acquisi-

tion dates Jan 15 (D1), Jan 24 (D2), Oct 23 (D3), Oct 24 (D4) and Oct 25 (D5). In each

experiment, zebrafish heart was isolated and then soaked in the fluorescent voltage sensitive

dye RH-237 [14] by immersion in 8 µM solution. 10 µM blebbistatin excitation-contraction

uncoupler [20] was used to inhibit motion artifact caused by contraction. Excitation illumi-

nation was provided by a 200 mW 532 nm DPSS laser (Laserglow Technologies). Spectral

filtering was provided by a 560 nm long pass dichroic and a 710 nm long pass emission filter

(Omega Optical). Fluorescent images of the heart were acquired using two GE680 (Allied

Vision Techologies) cameras at 205 frame per second (fps) and resolution of 640×480 pixels.

Typical optical mapping image is presented in Figure 2.1 with typical atrium and ventricle

signals.

For each of the experiments, the temperature started from 28 ◦C, then dropped 1 ◦C

at each step until it reached 18 ◦C. After reaching 18 ◦C, the temperature increased

8
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(a) Optical mapping image
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Figure 2.1: Optical mapping zebrafish heart image and typical signals: (a) labeled optical
mapping image zebrafish image, (b) plots of typical atrial and ventricular signals from
bounding boxes in (a).

1 ◦C at each step until it got back to 28 ◦C. There were several small exceptions in

the dataset regarding to this temperature protocol: in D2 dataset, temperature was only

decreased; in D1 dataset, temperature increase ended at 27 ◦C, so there was no upward 28

◦C data. In summary, D1 5 have 94 recordings in total from 5 different hearts at 11 different

temperatures; in each recording, there are 4000 frames (∼19.5 sec).

After data acquisition, boundaries of atrium and ventricle were delineated manually for

each recording by a trained expert. The subsequent analysis and processing were done on

this region of interest (ROI).

2.2 Characteristics of optical mapping zebrafish heart data

Many problems exist in the original optical mapping data which cause difficulties of data

processing and interpretation.

1. The camera used in this study is slow compared to other systems [25, 23, 27], which

typically have frame rate ranging from 333 fps to 3000 fps. This low temporal resolu-

tion makes timing information comparatively inaccurate and unreliable.

2. The optical mapping data has low signal-to-noise ratio (SNR) because of several rea-

sons. The main reason for low SNR is the low dynamic range of voltage induced optical

intensity change. The peak to peak value of voltage induced optical signal intensity
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is only 2 or 3 unit in the output signal. After quantization, it loses the original signal

shape and appears more like a staircase signal. In addition, the optical mapping signal

has been corrupted by readout noise with σ ≈ 0.2 unit [19] before going through the

quantization.

3. Signal drifting happens due to various reasons. RH-237 has a well-known photobleach-

ing effect, a property intrinsic to all fluorescence voltage-sensitive dyes. Fluorophore

has photochemical destruction effect [15] when it is excited by laser. This causes a

gradually decrease of recorded pixel intensity over time. Besides photobleaching effect,

there are also ‘upward’ driftings potentially caused by laser intensity drifting and other

slow change in experimental conditions. In our optical mapping data, these driftings

are noticeable even with in a short time of recordings.

4. Non-uniform intensity makes the signal to signal comparison hard. The voltage sen-

sitive fluorescence dye has different concentration in different locations of the heart.

This results in large differences in signal magnitude across pixels, which makes com-

parison between signals hard to perform.

5. Various artifacts exist in zebrafish heart OM data. Although the ex-vivo zebrafish

heart is contraction-inhibited by blebbistatin, the concentration of blebbistatin is not

high enough to fully stabilize the heart, since higher concentration will tend to change

the biological characteristics of cardiac activity. These small, even hardly visible

motions are combined with non-uniform concentration of voltage sensitive dye to cause

changes in pixel intensity. These motion inducted intensity changes are mixed up

with voltage inducted intensity change. This way, the acquired signal contains both

voltage and motion artifact information. Except for the internal motion from the

heart, external motions caused by the vibration of laser, power supply and working

platform also bring motion artifacts into the observed signals.

6. Signal inside a pixel is a convolution of signals from many different cells inside that

pixel. Different from electrophysiology measurement using microelectrodes, which

directly measures the action potential of single cell, the OM time series recorded for

one pixel is actually composed of fluorescent light emitted from multiple cells inside

that pixel. Furthermore, due to the translucent and scattering nature of zebrafish

heart tissue, signal from single pixel also contains light from different depth and lateral
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locations. This effect changes the nature of the signal and makes the electrophysiology

signal characteristics for different cells less obvious and effective in OM data [26].

2.3 Preprocessing

Dealing with the above mentioned problems, a set of preprocessing steps are need to be

performed before any measurements, automatic identification and even manual identification

can be performed. Different methods for preprocessing cardiac optical mapping data have

been reviewed in [26]. Due to size of zebrafish heart and our equipment limitations, our

OM data is corrupted more heavily than OM data from other animals including mouse,

rabbit and swine in previous published results. The very low SNR makes large amount of

averaging operation necessary.

2.3.1 Full length signal enhancement

First, we performed a 4 by 4 binning on the original 640×480 original recording to make it

a 160×120 image sequence. For any single image I(t)original at time t, we transformed it

to I(t)binned by

I(t)binnedi,j =
1

mn

(m+1)i∑
s=mi+1

(n+1)j∑
t=nj+1

I(t)originals,t , (2.1)

where i, j, s and t are image coordinates; m and n are binning size and m = n = 4 in this

case. This binning (or down sampling) process was considered as the initial step in average

smoothing. It also reduced the computation workload in following processing steps.

Then, both spatial and temporal Gaussian smoothing were performed on this binned

data. To compensate for drifting caused by photobleaching and other effects, a quadratic

curve was fitted to each individual pixel’s signal [26] by least square fitting. For any single

signal y(t), we fitted a curve q(t) = β0 + β1t + β2t
2 to represent the drifting trend of y(t).

As y(t) was represented by Y = [y1, y2, ..., y3]T , we calculated [β0, β1, β2]T by

[β0, β1, β2]T = (XTX)−1XTY (2.2)

where X is the matrix contains different powers of different t’s used for the fitting.

X =


1 1 · · · 1

t1 t2 · · · tn

t21 t22 · · · t2n


T



CHAPTER 2. DATA ACQUISITION AND PREPROCESSING 12

This quadratic curve q(t) was then subtracted from the original signal to remove the drifting

effects.

Finally, the signals were reversed and scaled to [0, 1]. Here, the signal reversion is

required because of the light intensity emitted by voltage sensitive dye RH-237 is negatively

correlated with the value of action potential. The scaling eliminates the signal magnitude

difference caused by uneven blebbistatin concentration. This entire processing pipeline for

a single signal is illustrated in Figure 2.2.

After the enhancement, the new image sequence is a visualization of the action potential

propagation. It is shown and compared with the original recordings in Figure 2.3. The action

potential is invisible in original image sequence but clearly visualized in the enhanced data.

In addition, Figure 2.4, 2.5 and 2.6 shows the action potential propagation of same

zebrafish heart under different temperature 18◦C, 28◦C and 34◦C. We can see that high

temperature leads to higher heart rates, since in the time period that 18◦C heart finishes

one cardiac cycles, the 28◦C one finished about one and half cardiac cycles and 34◦C heart

finishes two cardiac cycles.

2.3.2 Cycle averaging

Even after full length signal enhancement described in Section 2.3.1, signals are still heavily

corrupted by noise, which hampers further measurements and analysis. To increase the

SNR even higher, we averaged of the signals inside each cardiac cycle and got a single one

cycle signal and take it as the final output of preprocessing.

Previously, cycle averaging has been performed to increase SNR of OM data in [33]. The

cycles were synchronized with recorded stimuli markers. Here, we propose a method that

averages cardiac cycles solely based on OM data and does not involve any synchronization

input from external sources.

We assume that the heart does not have second-degree atrioventricular block [43], which

means both atrial impulses might fail to conduct to ventricle. But the heart may have

first-degree atrioventricular block [4] or other problems that will not cause skipping cycles

in ventricle. For example, different cardiac cycles have different periods.

For cycle identification, we used image similarity ρ(t) to sync different cycles. First, a

reference image was chosen. We took the average enhanced signal of atrium, and choose

the frame correspond to the largest average signal value as reference image I(t0). Then, we

calculated cosine similarity [10] between every frame I(t) and the reference frame I(t0) as
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(a) Single pixel signal from original data
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(b) Single pixel signal from 4x4 binned data
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(c) Spatial and temporal smoothed signal from a single pixel and overlaid
with the drifting curve fitted
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(d) De-trended, reversed and scaled signal inside a pixel

Figure 2.2: Preprocessing pipeline illustration: (a) Raw signal from single pixel of original
data, (b) Raw signal from single pixel of 4 by 4 binned data, (c) spatial and temporal
smoothed signal; the green line is the fitted drifting trend, (d) drifting is removed, and
signal is reversed and scaled

image similarity:

ρ(t) =
I(t) · I(t0)

‖I(t)‖‖I(t0)‖
=

∑
i,j Iij(t)× Iij(t0)√∑

i,j I
2
ij(t)×

√∑
i,j I

2
ij(t0)

, (2.3)

where Iij(t0) and Iij(t) represent the pixels values in I(t0) and I(t) respectively.
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(a) Original optical mapping image sequence

5ms 171ms 180ms 200ms 229ms

234ms 249ms 273ms 361ms 400ms

(b) Enhanced optical mapping image sequence

Figure 2.3: Illustration of action potential propagation after preprocessing: (a) Original
image sequence, (b) Enhanced image sequence with pseudo jet color map showing the action
potential propagation

To divide the full length signal into individual cardiac cycles, peaks in ρ(t) were taken

as the separators. After that, each individual cycle between 2 adjacent separators were

interpolated to vectors with same length presenting time scaling.

To perform cycle averaging, we need to align each individual cycle first and then average

those aligned signals. The 1-D diffeomorphisms were acquired in the 2 steps: First, a ‘mean’

one-cycle image cosine similarity was generated by algorithm proposed in [22, 44]. It treats

different signals as random time-warpings of the same original signal. This original signal is

estimated as the Karcher mean on the quotient space of equivalence classes formed by action
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341ms 376ms 380ms 400ms 439ms

Figure 2.4: Illustration of action potential propagation under 18 ◦C. This is from a separate
dataset (other than D1∼5) which contains temperature 34 ◦C.
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Figure 2.5: Illustration of action potential propagation under 28 ◦C. This is from a separate
dataset (other than D1∼5) which contains temperature 34 ◦C.
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341ms 376ms 380ms 400ms 439ms

Figure 2.6: Illustration of action potential propagation under 34 ◦C. This is from a separate
dataset (other than D1∼5) which contains temperature 34 ◦C.
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of warping group. Second, every individual one cycle image cosine similarity is registered

to the acquired ‘mean’ signal. The registration is done with time-warping algorithm based

on dynamic programming [49]. It first smooths noisy signals with kernel estimation. Then,

it defines a proper cost function between the target signal and the template signal. Finally,

this cost function is minimized by shifting and warping the target signal using dynamic

programming.

Having acquired cycle separators and time-warping functions based on image cosine

similarity, we segmented individual cardiac signals in to cycles, interpolated them into same

length, warped them with the warping functions and averaged them to get a single average

one cycle signal. The process of cycle averaging is illustrated in Figure 2.7 and Figure 2.8.

These 2 figures compares the linearly cycle averaging with the proposed cycle averaging after

time-warping. We can see that applying time-warping function gives less standard deviation

and less deformed average signal cycle, and hence is a superior method than linear averaging.

Here, the time-warping algorithm was added into the pipeline at a relatively later stage.

The results discussed in the following chapters are therefore based on linearly averaged one-

cycle signals. However, as the time-warping based cycle averaging has now been added to

the tool chain, it can be used for analysis of new data.

2.4 Conclusion

In this chapter, we introduced the optical mapping data acquisition process, data character-

istics and its preprocessing steps. The originally acquired data has (1) low frame rate, (2)

very low SNR, (3) slow drifting, (4) non-uniform spatial intensity, (5) motion artifacts and

(6) mixing of signal locations. The proposed preprocessing steps turned the very low SNR

original data into clearly interpretable signals and videos. The proposed methods solved

the problem of (2), (3), (4). However, as a price we pay, it aggravated the location mixing

problem. The novelty of this preprocessing pipeline is in the cycle averaging method. Un-

like previous cycle averaging method [33], the proposed method utilize the information from

the optical mapping data itself and does not need external information. need to external

information In summary, we illustrate the preprocessing pipeline in Figure 2.9.
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(b) warping functions
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(c) Similarity cycles before warping
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(d) Similarity cycles after warping
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(e) Average similarity before warping
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(f) Average similarity after warping

Figure 2.7: Acquiring warping functions from image cosine similarity: (a) image cosine
similarity over time, (b) calculated warping functions, (c) segmented and interpolated cycles
of similarity, (d) similarity cycles after applying warping functions, (e) mean and standard
deviation before applying warping, (f) mean and standard deviation after applying warping.
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(a) Signal from single heart pixel
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(b) Signal cycles before warping
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(c) Signal cycles after warping

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Frame Index

A
c
ti
o
n
 P

o
te

n
ti
a
l

(d) Average signal before warping
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(e) Average signal after warping

Figure 2.8: Use acquired warping functions on individual signal: (a) action potential signal
from single pixel of heart, (b) segmented and interpolated cycles of action potential signal,
(c) action potential signal cycles after applying warping function, (d) mean and standard
deviation before applying warping, (e) mean and standard deviation after applying warping.
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4 by 4 binning
Spatial and temporal
Gaussian smoothing

Drifting removal by
subtracting fitted
quadratic curve

Scale enhanced
signal to [0, 1]

Calculate image
cosine similarity

Cycle segmentation
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similarity signal

Acquire ‘mean’
one-cycle similarity

Acquire time-
warping functions

Segment, warp and
average individ-
ual signal cycles

Figure 2.9: The preprocessing pipeline



Chapter 3

Manual Identification

Without clearly-stated, logical rules of how to detect pacemaker in zebrafish heart, the best

approach is to have experienced physiologist manually label the optical mapping signals.

This would benefit us in two aspects: (1) it provides information of how human expert

identifies pacemaking signals; (2) it provides groundtruth data for automatic methods to

be compared with. However, the number of pixels to label is very large, which makes this

process very slow and tedious.

In this chapter, we propose and implement a manual pacemaker identification pipeline

by first grouping signals into small clusters automatically, then perform expert labeling on

the average signals of these clusters. This 2-step process significantly reduces the manual

workload.

3.1 Methods

3.1.1 Pre-labeling Clustering

Ideally, to acquire expert opinion on whether one pixel is constituted by pacemaking cells,

we need to have the expert to label the signal on every pixel inside the atrium. This work is

tedious, since for each double-side recorded data we have about 1500∼2500 pixels to label,

given the frame size is 160×120. Even if we label one pixel every 2 seconds, we need an

hour to label one recording. Labeling about 100 recordings would need 100 hours, which

is not affordable. Furthermore, if the data resolution increases, this process will take even

longer to finish.

22
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Therefore, methods reducing the manual labeling workload is desired. Using clustering

to reduce the number of signals to label is a natural way to achieve this goal. Common

clustering methods include K-Means, fuzzy c-means (FCM) and expectation-minimization

algorithms [51]. These clustering algorithms are iterative processes, in which the cluster

centers and membership function of each sample are calculated based on each other alter-

natively until convergence.

In pacemaker identification problem, we try to identify different connected regions. It is

reasonable to assume that cells of similar function will likely be spatially adjacent. Hence,

a method that considers both signal space and spatial adjacency is desired. Here, we used

the robust fuzzy c-means (RFCM) [37, 38], which incorporates spatial information by pe-

nalizing spatially scattered clusters. FCM and RFCM are briefly introduced below, under

our application scenario. For detailed explanation of RFCM, we refer the reader to [37, 38].

Fuzzy c-means

RFCM considers additional spatial information based on the traditional FCM. In traditional

FCM, we try to minimize an objective function with respect to the membership function of

each data sample ujk and the centroid of each cluster vk.

JFCM =
∑
j∈Ω

C∑
k=1

uqjk‖yj − vk‖2 . (3.1)

Here, j is the pixel index, yj is the signal/vector on each pixel, C is the number of

classes, k is class index, Ω is our region of interest (ROI) and q is a parameter that controls

the ‘fuzziness’ of FCM clustering. The membership functions are constrained to be positive

and need to sum up to one for each individual sample:

C∑
k=1

ujk = 1 . (3.2)

JFCM is the sum of squared difference inside each class. By minimizing it, the difference

between signals inside each class are minimized. The algorithm starts from C random

initialized centroids in the signal vector space, and use an iterative process to update ujk’s

and vk’s, until the convergence of JFCM .
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Robust fuzzy c-means

Based on Equation 3.1, RFCM adds spatial information related penalty into the objective

function:

JRFCM =
∑
j∈Ω

C∑
k=1

uqjk‖yj − vk‖2 +
β

2

∑
j∈Ω

C∑
k=1

uqjk

∑
l∈Nj

∑
m∈Mk

uqlm , (3.3)

where Nj is the set of j’s neighboring pixels, and Mk = {1, ..., C}\{k} is the classes except

for k. β is an introduced parameter that controls the trade off between original FCM

objective function and smoothness of membership function.

The first part of Equation 3.3 is the original FCM objective function. The second term

penalizes the spatial membership function inconsistency. In other words, for a specific pixel,

this term is minimized when one of its class membership values is large and membership

values for other classes at its neighboring pixels is small (and vice versa).

Similar to FCM, RFCM starts from C random initialized centroids and does an iterative

process to update ujk’s and vk’s. The updating rules derived using Lagrange multipliers

are derived in [37] as:

ujk =
(‖yj − vk‖2 + β

∑
l∈Nj

∑
m∈Mk

uqlm)−1/(q−1)∑C
i=1(‖yj − vi‖2 + β

∑
l∈Nj

∑
m∈Mi

uqlm)−1/(q−1)
, (3.4)

vk =

∑
j∈Ω u

q
jkyj∑

j∈Ω u
q
jk

, k = 1, · · · , C . (3.5)

Here, we set the number of classes to be 100, which means that all the signals are

grouped into 100 clusters. The final number of clusters are usually less than 100, since

some of the clusters contain no pixel at the end. After the RFCM clustering, we take the

average signal of each region and perform manual labeling on these average signals. This

process reduced the manual work by at least 20 times compared to performing pixel by

pixel manually labeling. For the RFCM clustering, we do 100 iterations, which takes about

2 minutes to run on our computer (Intel Core2 duo 2.66 GHz, 6GB of RAM).

3.1.2 Manual Labeling Process

After the clustering process, averaged signal in each cluster was presented to and labeled

by a trained expert, EL. EL, a physiologist by training with a doctoral degree, is currently
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Figure 3.1: Graphical user interface for manual labeling

investigating cardiac pacemaking nodes in mouse, rabbit and zebrafish hearts with a variety

of techniques including optical mapping.

When performing manual labeling, averaged full length signals and averaged one cycle

signals were presented to the expert. As we thought the expert’s opinion should only focus on

identifying the waveform with physiologically meaningful interpretation, we did not provide

him other information like location and neighborhood signals. Figure 3.1 is the screen shot

of the manual labeling graphical user interface (GUI). It shows the averaged full length

signal and one cycle signal for each clustered region.

User can choose to label the signal and its corresponding region to five different labels:

normal atrial signal (AN), corrupted atrial signal (AC), normal nodal signal (NN), corrupted

nodal signal (NC) and other (OT). Here corrupted means that the given signal has visible

distortion, but the expert thinks he can still label it according to some features. On the

GUI, it also shows the status of this signal (Labeled/Unlabeled), the data name and number

of total and left signals in this data.
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3.2 Results

3.2.1 Results of manual identification

Figure 3.2 shows an example of RFCM clustered the averaged signals of each cluster with

their standard deviations. The manual labeling result on the same example is shown in

Figure 3.3, where differently labeled signals and regions are color coded. We can observe

some features that the expert is looking for. For example, nodal signals usually have positive

diastolic depolarization slope. Atrium signal usually have flat resting period before the main

upstroke. Decreasing slope in resting period and second peak are features for corrupted

signals.

Figure 3.4 shows more labeling results with labeled images and grouped signals. From

labeled images, we can see that regions with same label are mostly connected to each other

as large image patches. Also, corrupted atrial and nodal region are usually connected to

normal atrial and nodal region respectively. In addition, regions labeled from anterior and

posterior sides of heart coincide with each other well.

Furthermore, part of our manual identification results on OM data agree with the pace-

making region positions reported in literature. According to the labeled images, the po-

tential nodal regions appear consistently in atrium on top side (at the opposite end of AV

junction) and usually near the bulbs side. The identified pacemaking region on top side

of atrium coincides with the ‘ring around the venous pole’ reported in [45] and the result

acquired with activation time measurement in [29].

For the second pacemaking region on one side of atrium, we speculate their appearance

is possibly caused by 2 reasons: (1) the deformability of tissue makes atrium stay in rel-

atively different shapes and positions in experiments with different individual hearts; (2)

current surgical procedure damages the SAN which allows other pacemaker cells starting to

dominate.

3.2.2 Ranking data according to manual label

Suitability and quality of data plays an important role in development of pacemaker identifi-

cation method. We mainly care about two things: (1) whether the data is largely corrupted

by motion and (2) whether it contains identifiable nodal regions. Therefore we propose two

measures which represent the percentage of uncorrupted region and percentage of nodal
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(a) Averaged signals from different clusters in atrium

(b) Area classfication on atrium

Figure 3.2: Result of the first stage of clustering: (a) averaged signals from each clusters,
(b) zebrafish heart with color coded patches labelled. Each signal in (a) represent the the
average in the cluster of the same color in (b). (b) contains images from both anterior and
posterior sides.

region respectively. The ‘normal coefficient’ (NMC) takes the form of:

NMC = 1− area(OT ) + 0.5(area(NC) + area(AC))

Total area
. (3.6)

By considering OT as totally corrupted region, NC and AC as half corrupted region, NMC

calculates the percentage of uncorrupted region in the total area. Generally, it represents
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(a) Color coded labeled average signals

AN AC NN NC OT

(b) Signals grouped according to label

(c) Manual area classification on atrium

Figure 3.3: The color coded area partition after manual labeling: (a) color coded labeled
average signals; (b) signals grouped according to label; (c) manual area classification on
atrium.
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AN AC NN NC OT

(a)

AN AC NN NC OT

(b)

AN AC NN NC OT

(c)

AN AC NN NC OT

(d)

Figure 3.4: More image and signal labeling results from different zebrafish hearts. The
colors of bounding boxes and image labels correspond to each other. Empty bounding box
without signals means there no such type of signal labeled in this data.

the ‘intactness’ of the acquired data.

The ‘nodal coefficient’ (NDC) takes the form of:

NDC =
0.5area(NC) + area(NN)

0.5(area(NC) + area(AC)) + (NN +AN)
. (3.7)

Similarly as NMC, NDC considers NC and AC as half corrupted region. It represents the

percentage of nodal region on among the uncorrupted region.

Ideally, for ‘good’ data, we expect both NMC and NDC to be high. In Figure 3.5, we

can see that only D1 dataset has both relatively high NMC and NDC. While for other

datasets, either or both of NMC and NDC is low. Based on this observation, we separate

these datasets into two groups: high quality data which contains D1 and low quality data

which contains the rest of the datasets. To reflect the true performance under different data

condition, some methods and measurements will be analyzed separately on high and low
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Figure 3.5: The normal coefficient and nodal coefficient for different datasets

quality data in the following chapters of this thesis.

3.3 Conclusion

This chapter introduced a computer assisted pipeline for labeling atrium pixels on optical

mapping data. The advantages of this pipeline are: (1) the RFCM procedure groups signals

together, the average signal of each cluster has higher SNR than the signals from single

pixels; (2) it reduces the manual labeling workload significantly. The disadvantages include:

(1) RFCM has randomness, which causes slight inconsistency of labeling if performed mul-

tiple times; (2) this procedure is not as accurate as labeling every single pixel signal and

will cause inaccuracy when using it as a groundtruth for evaluation.

The manually labeled signals and image regions are verified in different aspects: (1) the

pixels with same label are connected regions; (2) normal and corrupted regions are usually

adjacent; (3) the labeled pacemaking sites correspond to those described in literature.



Chapter 4

Measurements and Analysis

Physiologically meaningful measurements provide useful information for identification of

different functional areas on zebrafish heart. They also provide a way of validating the

expert manually labeled data according to physiological properties. Early activation time

and presence of diastolic depolarization are important criteria for determining pacemaker

cells in cardiac electrophysiology [21]. In this chapter, activation time and diastolic slope

value are measured on enhanced one-cycle optical mapping signals and analyzed statistically

with the expert labeled data.

4.1 Methods

Early activation time and positive diastolic slope value are the two key features for dis-

tinguishing nodal signal from atrial signal. Here, we use different terms, including ‘resting

slope’, ‘slow slope’ and ‘diastolic slope’ to refer the diastolic slope of nodal signal and resting

period slope of atrial signal. Contrasting to ‘slow slope’, we refer to the main depolarization

upstroke as ‘fast slope’.

The signal used for measurements is different from the scaled signals used in Chapter

2. In Chapter 2 we normalize the signal value to [0, 1], which eliminates the proportional

correlation between different pixels. Here, the signal f(t) is used for calculating diastolic

slope value, thus need to be an ‘absolute value’ in the sense that it can be compared across

pixels. Under the assumption that voltage induced intensity variation is proportional to the

31
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mean intensity of that pixel, we define:

f(t) =
F (t)

E(F (t))
, (4.1)

where F (t) is the enhanced one-cycle signal without scaling to [0, 1] and E(F (t)) is the

expectation (average value) of F (t).

4.1.1 Measurements

Measurements on a single signal

Activation time is defined by time point when the signal has the fastest rising speed [26]:

tactivation = arg max
t

df(t)

dt
, (4.2)

where f(t) is the recorded fluorescence intensity. OM signals are sometimes noisy, which

makes the t that satisfies Equation 4.2 not the expected as correct activation time point.

In order to deal with this problem, we utilized the single peak property of normal cardiac

signal. The peak location was first extracted, and activation time was searched in the local

range before peak time:

tactivation = arg max
tpeak−tlocal<t<tpeak

df(t)

dt
, (4.3)

where tpeak is the peak time and tlocal is the local range in which tactivation is searched.

To calculate the diastolic depolarization slope value, we need to identify the starting and

ending point of the ‘slow slope’. Given tend represents the diastolic slope ending point and

t1st represent the first point of the averaged one cycle signal, tend was defined as the point

that is farthest from the straight line connecting the 1st point (t1st, f(t1st)) and peak point

(tpeak, f(tpeak)) and satisfy t1st < tend < tactivation:

tend = arg max
t1st<t<tactivation

|(f(tpeak)− f(t1st))t− (tpeak − t1st)f(t)− t1stf(tpeak) + tpeakf(t1st)|√
(f(tpeak)− f(t1st))2 + (tpeak − t1st)2

.

(4.4)

Under this definition, the value of tend is not affected by the scaling of both f(t) and t,

which is a desired property. Detailed derivation of Equation 4.4 and its scaling invariance

property can be found in Appendix A.

Having tend as reference, the starting point used to calculate diastolic slope was defined

as tstart = tend − toffset. The parameter toffset is an empirical temporal length to capture



CHAPTER 4. MEASUREMENTS AND ANALYSIS 33

enough points in diastolic period while avoiding including the corrupted interval. After

having tstart and tend, we calculated the slope value sdiastolic by fitting a straight line to the

points between tstart and tend with least square regression [36]:

sdiastolic =

∑
tstart6ti6tend

(ti − E(ti))(f(ti)− E(f(ti)))∑
tstart6ti6tend

(ti − E(ti))2
, (4.5)

where E(ti) is the average of ti’s and E(f(ti)) is the average of f(ti)’s.

Activation map and slope map

Using methods described in Section 4.1.1, we measured the activation time tactivation and

diastolic depolarization slope sdiastolic for every single pixel or clustered region in atrium.

By plotting these values using pseudo colormap, we acquired the activation map and slope

map.

4.1.2 Statistical analysis

T-test

After acquiring measurements from original enhanced one-cycle signals on both single pixels

and average signals on manual labeled patches, we performed statistical analysis to reveal

the correlation between these measurements and the manually labeled regions.

Pacemaker cells have early activation time and higher positive diastolic slope value.

Hence, for both activation time and slope value, we performed one-sided hypothesis testing

[36]. As nodal regions (or pixels) and atrial regions (or pixels) are not paired, we did

one-sided two-sample t-test to examine our hypothesis on activation time and slope value.

For activation time, we tried to accept the alternative hypothesis HA that activation

time is earlier in nodal regions than in atrial regions:

HA : µtnodal < µtatrial , (4.6)

by rejecting the null hypothesis H0 that states the opposite:

H0 : µtnodal > µtatrial . (4.7)

For diastolic slope value, we tried to accept the alternative alternative hypothesis HA that

diastolic slope value is larger in nodal regions than in atrial regions:

HA : µsnodal > µsatrial , (4.8)
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Figure 4.1: Measurements on single signal

by rejecting the null hypothesis H0 that states the opposite:

H0 : µsnodal 6 µsatrial . (4.9)

4.2 Results

4.2.1 Examples of measurements

Figure 4.1 shows an example of found tactivation, tstart and tend in a single typical nodal signal,

which contains a positive diastolic depolarization slope (slow upward slope), a depolarization

upstroke (fast upward slope) and a repolarization slope (downward slope). After measuring

activation time and slope value on signal of every pixel, they can be plotted as activation

map and slope map respectively as shown in Figure 4.2.

4.2.2 P-value of measurements

We calculated the activation time and slow slope value for both single pixel signals and the

cluster average signal used in manually labeling process. For each single data, we did a

t-test to compare both “AN vs NN” and “(AN + AC) vs (NN + NC)”, to examine how are

activation time and slope value related labeled atrial and nodal region. Results are shown

in Figure 4.3 and Table 4.2.2.
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(b) Slope map

Figure 4.2: Example of Measurement maps: (a) activation map; (b) diastolic depolarization
slope map
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Figure 4.3: Boxplots of p-values: For the x-axis labels, T means we are comparing activation
time; S means slope value; C means we do comparison on cluster average signals; P means
that comparison are on pixel signals; N means we only use normal regions that is “AN vs
NN”; A means we use all regions which include “(AN + AC) vs (NN + NC)”. For the
boxplot, the red horizontal bar is the median; red star is the mean; the edges of the box
are the 25th and 75th percentiles; the upper and lower whiskers correspond to ±2.7σ of the
data; red plus signs are single outliers outside of the whiskers.

From Figure 4.3 and and Table 4.2.2, we can see that the behavior of slow slope value
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Percentage of HA = 1 Average of p
Normal All Normal All

Activation time
Pixel 0.2254 0.3978 0.6174 0.5413

Cluster 0.0735 0.0968 0.5712 0.5236

Slope value
Pixel 1 1 0.0012 0.0004

Cluster 0.8028 0.8065 0.0393 0.0373

Table 4.1: Statistics of activation time and slow slope value in terms of percentage of HA = 1
and average p value

in most of the data satisfies our hypothesis in Inequality 4.8:

HA : µsnodal > µsatrial ,

where µsnodal and µsatrial are the mean slope values in nodal and atrial regions, respectively.

However, activation time does not behave as we expected. The potential reasons are dis-

cussed in Section 4.3

4.2.3 Data variability

In t-tests, slow slope value shows significant difference between nodal and atrial regions. We

now examine the variability of slow slope values.

Figure 4.4 shows the boxplots of slope values in AN, NN, AN + AC and NN + NC

respectively given the temperature is 27 ◦C. Although generally slope values in nodal

regions are larger than those in atria regions, these values still shows large variance across

different hearts and acquisitions even for the same temperature and same labeled regions.

4.2.4 Correlation between slope and temperature

Besides positive slope value, we expect to see the increase of slope value as temperature

increases in nodal regions. Therefore, we expect to see this trend in nodal regions, especially

on normal nodal regions (NN) and on the ‘high quality’ dataset D1 because of its large

uncorrupted area and nodal area.

In Figure 4.5 and Figure 4.6, NN and NN + NC slope value boxplots are plotted with

different acquisitions over temperatures. We can see increasing trends in more than half of

the NN data and almost all of NN + NC data. Among plots of NN, D1 down, D1 up, D3

up and D5 up show clearly linear increasing trends. Here, ‘up’ and ‘down’ represents the

temperature trend when acquiring the data. Among plots of NN + NC, all data except for
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(a) Slope values in AN
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(b) Slope values in NN
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(c) Slope values in AN + AC
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(d) Slope values in NN + NC

Figure 4.4: Example showing slope value variability given same temperature (27 ◦C) and
same manually labeled regions (for X axis labels, u means up and d means down): (a) Slope
values of average cluster signals labeled as AN, (b) Slope values of average cluster signals
labeled as AC, (c) Slope values of average cluster signals labeled as AN or AC, (d) Slope
values of average cluster signals labeled as NN or NC

D3 down, D5 down and up show clearly linear increasing trends. The temperature relation

is more obvious on NN + NC than NN on ‘low quality’ data, which is probably due to the

number of labeled NN pixels in ‘low quality’ data is too small to give a stable expected

trend. In addition, we plot the signals and slope values of representative NN data together

in Figure 4.7.
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Figure 4.5: Boxplots of slope value of temperature on NN: ‘up’ and ‘down’ represents the
temperature trend when acquiring the data. Empty column means there is no NN region
labeled for that temperature. ‘D4, up’ has no NN region labeled for any single data, so it
does not appear in this figure.
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Figure 4.6: Boxplots of slope value of temperature on NN + NC: ‘up’ and ‘down’ represents
the temperature trend when acquiring the data. Empty column means there is no NN +
NC region labeled for that temperature.
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Figure 4.7: Signals and slope values over change of temperatures in the upward (up) or
downward (down) direction: representative average normal nodal region signal is plotted
over temperatures, and their measured slope is on the right side. The thick red curve
segments in signals represent the intervals used for slope value calculation.
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4.3 Conclusion and discussion

In this chapter, we measured and analyzed activation time and diastolic slope values. For

activation time, labeled nodal region was typically found to possess later activation time

than labeled atrial region. This is counter to what is expected from physiological properties.

However, discrepancy between observation and expectation is not surprising. Activation

time detection is sensitive to signal deformations, since it involves derivative calculation.

Unfortunately the optical mapping signals suffers from: (1) low sampling rate also low

spatial resolution; (2) signal mixing from multiple locations; (3) motion and other artifacts;

(4) potential errors caused by unrobustness of measurement method. Therefore, the validity

of the manual labeled data is not negated by this negative evidence.

On the other hand, the slope value is generally lower in atria region and higher in

nodal region as we expected. On the ‘high quality’ and some ‘low quality’ data, slope

value also increases with the increasing of temperature, which is an expected property of

pacemaking cells. This is also a strong evidence supporting the validity of manual labeled

data functionally. On data that is either corrupted heavily or having relatively small nodal

region area, this slope value-temperature correlation is not obvious, which may result from

multiple reasons, including motion artifacts, observation angle and individual physiological

problems of zebrafish heart caused in the experiment preparation.



Chapter 5

Automatic Identification

In order to enable high-throughput analysis of optical mapping data in cardiac research,

a fast pacemaker identification method is important for physiological researchers. In this

chapter, we propose two novel identification methods, show examples and perform quanti-

tative evaluation based on manually labeled data.

5.1 Methods

5.1.1 Thresholding based on slope value

We presented statistical analysis of diastolic depolarization slope value in Chapter 4. As

the slope value showed significant difference in nodal region and atrial region, it is natural

to use the slope value to distinguish between nodal and atrial region. Here, we used two

different type of slopes: one was the slope value of the signal on every pixel; the other was

the slope value of small clusters after a first round robust fuzzy c-means (RFCM) clustering

as we performed in Section 3.1.1. In addition, since slope values are expected to be different

under different temperatures, we acquired an optimal threshold that maximizes classification

performance (evaluation method explained in Section 5.2.1) on manually labeled data at a

given temperature. We then use this threshold to separate nodal and atrial regions in new,

unlabeled data.

42
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5.1.2 Two-step clustering

An expert identifying zebrafish heart OM signals does not simply ‘calculate’ the slope value

in mind. The expert utilizes the entire signal waveform to make this decision. For automatic

identification, we also would like to use the signal waveform to provide more information

beyond a single slope measurement. We anticipate this approach to provide better perfor-

mance than classification based on single slope value.

However, according to our observation, the shapes of the cardiac action potential wave-

forms of different individual zebrafish hearts show considerable variability under different

experimental conditions and is corrupted by different type of artifacts. This variability

makes logical algorithm design and supervised learning difficult to perform, because ‘new’

waveforms will be out of view of predefined logic or encountered data. To make the al-

gorithm robust to these sources of variability, we propose to use a two-step unsupervised

clustering framework to group pixels into small number of regions, which are easy for experts

to label in very short time later.

For the first round clustering, we used the RFCM method introduced in Section 3.1.1 to

separate atrium into many different spatially connected small regions. The average signals

for these clusters were then calculated. This step is equivalent to further smoothing in signal

vector space with spatial consideration. The calculated average signals are expected to be

less noisy than the original single pixel signal.

The second stage clustering was done on this average signals. In this stage of clustering,

we grouped signals with similar physiological properties. Clustering the signals in their

original vector space was expected to be insufficient for this purpose. This is due to the

fact that the distance in original vector space does not represent the physiological similarity

of signals from different cardiac cells. Instead, having similar rates of change and reaching

‘hills’ and ‘valleys’ in similar time, in other words, having similar ‘trends’, is likely correlated

to similarities in physiology. At least, we expect this to be true for separating nodal signal

from atrial signal based on the observation of our labeled signals.

To represent the descriptive ‘trends’ by quantitative values, a novel ‘discretization of

derivative’ (DoD) procedure was proposed. First, the derivative of the original signal is

calculated. Derivative is a good representation of ‘trends’. However, sometimes signals

sharing the same trend can be quite different in the magnitude of derivative values. This

makes clustering in the derivative vector space also difficult. To cope with this problem, a
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Figure 5.1: Procedure of performing discretization of derivative: (a) Original average signals
from different clusters, (b) derivative of these 3 signals, (c) discretized derivative, (d) After
mode filter is performed. In (d), 2 and 3 are more similar compared to in the original vector
space.

novel discretization step is proposed. In this step, the numerical derivatives are thresholded

to different preset values, which represent ‘fast increasing’, ‘slow increasing’, ‘flat’, ‘slow

decreasing’ and ‘fast decreasing’. Specifically, we have 3 parameters: slow threshold Tslow,

fast threshold Tfast and fast value Vfast. For any derivative value x, we want to calculate a

discretized y:

y =



−Vfast if x < −Tslow,

−1 if − Tfast 6 x < −Tslow,

0 if − Tslow 6 x < Tslow,

1 if Tslow 6 x < Tfast,

Vfast if x > Tfast.

(5.1)

Here, 0 is the ‘flat’; 1 and -1 represent ‘slow increasing’ and ‘slow decreasing’ respectively;

Vfast and −Vfast represent ‘fast increasing’ and ‘fast decreasing’ respectively. Finally, mode

filter was used to smooth the trends acquired from DoD procedure.

The DoD process is illustrated in Figure 5.1. The Euclidean distance between original

signal 1 and 2 d12 is 1.56, and distance between signal 2 and 3 d23 is 1.59, d12 < d23.

However, physiologically 2 and 3 are more similar, because they share the same ‘trends’.

After the DoD transformation d12 = 17 > 12 = d23, which means it reflects the actual

similarity better than in the original signal space.

Next, k-means clustering with a smaller number of classes was performed on the DoD

transformed representation to give the final grouping of functional time series. After the
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RFCM-DoD-Kmeans signal grouping process, final grouping results were presented to phys-

iologists for them to make fast decisions.

Besides this final manual decision step, we also proposed an empirical automatic method

to select nodal type group from the grouped signals. First, we chose the group with largest

average diastolic slope value as nodal region. Second, for other groups, if their average slope

values is larger than one third of the largest average slope value, they are labeled as nodal

region too. This facilitates the potential nodal signals to be identified automatically.

5.2 Experiments

5.2.1 Evaluation criteria

For evaluation of different identification methods, we use the Dice similarity coefficient

(DSC) [11] between automatically identified regionRauto and manually labeled regionRmanual:

s =
2|Rauto ∩Rmanual|
|Rauto|+ |Rmanual|

, (5.2)

where |R| is the area of region. R and |Rauto ∩Rmanual| represent the area of intersection of

these two regions. DSC was directly used for evaluating the performance of identification

based on slow slope value and automatic identification method based on 2-step clustering.

Besides the automatic identification methods, we also want a measurement for evaluating

the 2-step clustering method itself to know whether the bottleneck is 2-step clustering or

following nodal region identification step. In this case, DSC is not directly usable, since

clustering outputs several groups without nodal or atrial labels.

Therefore, we defined the ‘best possible Dice similarity coefficient’ (BPDSC) to measure

the performance of grouping methods. To calculate BPDSC, we first ranked a the final

clustered regions according to their individual DSC with the labeled nodal region. Then

we combined the 2nd region with the 1st region, and see if they had higher DSC. If it was

higher, we would combine the 2nd region with the 1st region. Next, we added the 3rd one

into it and compare DSC. This process stops when adding additional region decreases the

DSC. When the algorithm stops, the resulting DSC is taken as the BPDSC.

5.2.2 Experiments

In order to evaluate the proposed methods, we conducted a series of experiments.



CHAPTER 5. AUTOMATIC IDENTIFICATION 46

Slope value thresholding

For slope value thresholding, we tested it on single pixel signals, signals from RFCM clusters

used for manually labeling (referred as ‘original clusters’ below) and newly generated RFCM

clusters (referred as ‘other clusters’ below). It is expected that the performance on ‘other

clusters’ is lower than on ‘original clusters’, since the evaluation groundtruth is based on the

‘original clusters’. Therefore, performance on ‘other clusters’ is a more appropriate measure

of the true performance.

In terms of selection of threshold, we do 2 different experiments. The 1st experiment

is to iterate over all possible thresholds and pick the one with highest DSC. We refer to

this threshold as ‘best threshold’. The DSC given ‘best threshold’ reflects the capability of

thresholding method. The 2nd experiment is to use the same temperature data from other

hearts as training data. The threshold is acquired by iterating over all possible thresholds

on the training data, and pick the one with highest DSC and then use it for the data that

we would like to identify nodal region. This is one way of predicting the threshold given

labeled data.

Clustering based methods

The proposed RFCM-DoD-Kmeans method involves parameter selection. We fixed the

number of final K-means clustering to be 6, so that it allows physiologists quickly choose

‘pacemaker group’ from the grouping result and the extra 1 class besides 5 manually labeling

classes also provides robustness when intraclass variation is large.

Besides number of clusters, choice of distance measure affects the K-means algorithm.

We considered 4 distances, Euclidean, cityblock, cosine and correlation. The proposed

DoD transformation has 4 parameters to choose according to Section 5.1.2. They are slow

threshold Tslow, fast threshold Tfast, fast value Vfast and mode filter wmode. We considered

3 different values for each of them: for Tslow, we used 0.3, 0.5, 0.7; for Tfast, we used 2, 2.5,

4; for Vfast, we used 1.5, 2, 4 and for wmode, we used 5, 7, 11.

For RFCM-DoD-Kmeans, we did experiments on 324 combinations of these 5 parameters.

At this stage, we used the same RFCM clusters as those used for manual labeling. For K-

means clustering, we run it for 10 times and choose the one with ‘smallest within-cluster

sums of point to centroid distances’. For every experiment, the BPDSC was calculated

to represent performance. Under this context, the BPDSC S was a multiple dimensional
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matrix and a function of multiple parameters: S(Tslow, Tfast, Vfast, wmode, dist).

Next, we selected the best parameters on all data, high quality data and low quality

data by selecting maximum value from their BPDSC function:

pbesti = arg max
pi

Si(pi), i ∈ {all, good, bad} , (5.3)

where pi ∈ Tslow, Tfast, Vfast, wmode, dist represents the parameters. In the following sec-

tions, pbesti is referred as best parameters.

Besides best parameters, we also acquired a set of ‘best’ parameters in an average sense.

For example, to know the best value of Tslow, we did summation on every other parameters

to acquire the function S(Tslow) and choose the Tslow to maximize it. We refer them as ‘best

average parameters’:

pbest averageij = arg max
pij

Sij(pij) ,

i ∈ {all, good, bad}, j ∈ {Tslow, Tfast, Vfast, wmode, dist} ,
(5.4)

Sij(pij) =
∑
k1

· · ·
∑
kn

Si(pik1 , · · · , pij , · · · , pikn) ,

k1, · · · , kn ∈ {Tslow, Tfast, Vfast, wmode, dist}\j .
(5.5)

After acquiring these ‘best’ and ‘best average’ parameters, we used them to test the

performance of entire RFCM-DoD-Kmeans pipeline. For any single data acquisition, we

ran RFCM-DoD-Kmeans 10 times and use the average BPDSC as the performance mea-

surement. Here, the generated RFCM clusters are different from those used for manually

labeling, so they are the ‘other clusters’ defined earlier in this section.

For evaluating proposed RFCM-DoD-Kmeans method, we also performed experiments

on 2 other simpler clustering based grouping methods: (1) directly doing K-means clustering

on signals for single pixels; (2) doing K-means right after RFCM without doing DoD. In

what follows, we refer to them as direct K-means and RFCM-Kmeans.

For these 2 methods, the number of final clusters was also set to be 6. For each run of

Direct K-means, we chose the one out of 10 with smallest within-cluster sums of point to

centroid distances. This process was run 10 times on each of the data, the average BPDSC

indicates the performance.

We run RFCM-Kmeans on both ‘original’ RFCM clusters and ‘other’ RFCM clusters.

They were experimented in the same way as the proposed RFCM-DoD-Kmeans pipeline,

except for that DoD is not involved.
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Following each run of any clustering method, the nodal regions were selected using the

empirical method proposed in Section 5.1.2.

5.3 Results

In this section, we show examples of automatic identification of using different methods and

compare different identification methods quantitatively with manually labeled data.

5.3.1 Examples of different detection result

Slope value based identification

Figure 5.2 shows examples of using slope value to detect pacemaking region. Pacemaking

region identification based on thresholding of pixel signals is shown in Figure 5.2 (c) and

(d). In this example the DSC between manually and automatically labeled nodal region is

0.75. Identification based on thresholding on cluster signals is shown in Figure 5.2 (e) and

(f) and the DSC was calculated to be 0.92.

Clustering based identification

Figure 5.3 shows examples of nodal region identification based on using clustering methods.

Example results and corresponding BPDSC’s from direct Kmeans, RFCM-Kmeans and

RFCM-DoD-Kmeans are presented. Their corresponding BPDSC’s are 0.72, 0.77 and 0.87

respectively. Figure 5.4 shows more examples of RFCM-DoD-Kmeans results.

5.3.2 Quantitative performance analysis

Slope value thresholding

Figure 5.5 shows the boxplots of DSCs from experiments of slope value based thresholding.

The thresholding was done on pixels, ‘original clusters’ and ‘other clusters’. Performances

of all data, high quality data and low quality data are plotted separately. Figure 5.5 (a)

shows the DSCs of best thresholds. Figure 5.5 (b) shows the DSCs of trained thresholds

using different hearts under same temperature.
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(a) Manually labeled atrium regions (b) Manually labeled nodal region

(c) Pixel level slope value map (d) Nodal regions by thresholding on pixels

(e) Cluster level slope value map (f) Nodal regions by thresholding on clusters

Figure 5.2: Examples of nodal region identification based on slope value: (a) manually
labeled atrium with color coded regions, (b) manually labeled nodal region, (c) slope value
map calculated on every pixel, (d) identified nodal regions by thresholding on pixels (DSC
0.75), (e) slope value map calculated on average signal of every cluster, (f) identified nodal
regions by thresholding on clusters (DSC 0.92)

Clustering based methods

Figure 5.6 shows the the BPDSC boxplots of clustering methods. Figure 5.6 (a) and (b)

show the boxplots of running the proposed 2-step clustering result with best parameters and

best average parameters. In (a), the DoD-Kmeans process is done on the RFCM clusters

with manual labels, namely ‘original clusters’. In (b), the DoD-Kmeans process is done on

the RFCM clusters without manual labels, namely ‘original clusters’. In (c), mean BPDSC’s

of under different parameters and on different quality data are plotted. Figure 5.6 (d), (e),

(f) contain the boxplots of direct K-means and RFCM-Kmeans using different distance

measures for comparison.

Figure 5.7 shows the DSC boxplots of clustering method based automatic nodal region
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(a) Direct K-means regions/signals (b) Direct K-means nodal region

(c) RFCM-Kmeans regions/signals (d) RFCM-Kmeans nodal region

(e) RFCM-DoD-Kmeans regions/signals (f) RFCM-DoD-Kmeans nodal region

Figure 5.3: Examples of nodal region identification based on clustering (nodal re-
gions/signals are labeled as bright red): (a) Direct K-means clustering color coded regions
and signals, (b) Direct K-means identified nodal region (DSC 0.72), (c) RFCM-Kmeans
clustering color coded regions and grouped signals, (d) RFCM-Kmeans identified nodal
region (DSC 0.78), (e) RFCM-DoD-Kmeans color coded regions and grouped signals, (f)
RFCM-DoD-Kmeans identified nodal region (DSC 0.87)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.4: More examples of nodal region identification based on RFCM-DoD-Kmeans: (a),
(c), (e) and (g) are the grouping results. (b), (d), (f) and (h) are the corresponding results
after nodal group selection. The DSC is acquired by comparing the automatic identification
with the manual result shown in Figure 3.4 and Figure 3.3. (b) has a DSC of 0.51, (d) has
a DSC of 0.58, (f) has a DSC of 0.57, and (h) has a DSC of 0.65.
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(a) Best thresholds
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(b) Trained thresholds

Figure 5.5: Boxplot showing DSC of nodal region detection using slope value: Here, P means
pixel, C means ‘original clusters’, O means ‘other clusters’, A means all data, G means good
data and B means bad data. For example, PA means the thresholding of single pixels on
good data. (a) The thresholds used is acquired by searching all possible thresholds on the
test data itself to find the threshold with the highest DSC . This represents the highest
DSC we can achieve by thresholding on each data. (b) The thresholds used is acquired by
searching all possible thresholds on training data with same temperature as test data. This
represents the highest DSC we can achieve on unseen data given labeled training data.

identification. Each of the subfigures has same meaning as those shown in Figure 5.6.

Comparison between different methods

Table 5.1 compares the DSCs and BPDSC’s of different methods. Slope value based thresh-

olding on clusters outperforms other method given the best threshold. This again validates

the fact that slope value is an important factor that the expert considers while labeling.

However, slope thresholding given trained threshold has poor performance, which means

the slope value are not effective to identify nodal region in new data.

For clustering based methods, average performance of RFCM-DoD-Kmeans methods

given different parameters are similar to direct Kmeans and RFCM-Kmeans methods.

With selected parameters, the RFCM-DoD-Kmeans outperforms direct Kmeans and RFCM-

Kmeans significantly in high quality data. But the performance in all data and low quality

data is still similar. This is probably due to the fact that DoD transformation is not capable

of dealing with various motion corrupted signals. The high BPDSC of RFCM-DoD-Kmeans

represents its identification power when the final group selection is done by a manual rater
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(a) RFCM-DoD-Kmeans on ‘origi-
nal clusters’

0

0.2

0.4

0.6

0.8

1

AB GB BB AA GA BA

Different  dataset

B
P

D
S

C

(b) RFCM-DoD-Kmeans on ‘other
clusters’
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(c) Mean BPDSC with different
parameters
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(d) Direct Kmeans with different
distance
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(e) RFCM-Kmeans on ‘original
clusters’
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(f) RFCM-Kmeans on ‘other clus-
ters’

Figure 5.6: BPDSC boxplots of pacemaking region detection using clustering methods: for
X axis tick labels, the first letter A means on all datasets, G means on good datasets, B
means on bad datasets; for (a), (b), the second letter B means best parameters, and A
means best average parameters; for (d), (e), (f) the lower case letters represent distances
used in Kmeans, sqe is Euclidean, cit is city block, cos is cosine, cor is correlation. (a)
BPDSC’s on individual recordings processed by RFCM-DoD-Kmeans on ‘original clusters’;
(b) BPDSC’s on individual recordings processed by RFCM-DoD-Kmeans on ‘other clus-
ters’; (c) Mean BPDSC of all data with different parameters; (d) BPDSC’s on individual
recordings processed by direct Kmeans with different distance; (e) BPDSC’s on individual
recordings processed by RFCM-Kmeans on ‘original clusters’; (f) BPDSC’s on individual
recordings processed by RFCM-Kmeans on ‘other clusters’.
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(a) RFCM-DoD-Kmeans on ‘origi-
nal clusters’
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(b) RFCM-DoD-Kmeans on ‘other
clusters’
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(c) Mean BPDSC with different
parameters
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(d) Direct Kmeans with different
distance
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(e) RFCM-Kmeans on ‘original
clusters’
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(f) RFCM-Kmeans on ‘other clus-
ters’

Figure 5.7: DSC boxplots of fully automated pacemaking region detection using clustering
methods: for X axis tick labels, the first letter A means on all datasets, G means on good
datasets, B means on bad datasets; for (a), (b), the second letter B means best parameters,
and A means best average parameters; for (d), (e), (f) the lower case letters represent dis-
tances used in Kmeans, sqe is Euclidean, cit is city block, cos is cosine, cor is correlation.
(a) DSCs on RFCM-DoD-Kmeans based automatic identification on ‘original clusters’; (b)
DSCs on RFCM-DoD-Kmeans based automatic identification on ‘other clusters’; (c) Mean
DSC of all data with different parameters; (d) DSCs on direct Kmeans based automatic
identification with different distance; (e) DSCs on RFCM-Kmeans based automatic identi-
fication on ‘original clusters’; (f) DSCs on RFCM-Kmeans based automatic identification
on ‘other clusters’.
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All Good Bad

Slope value
based

Best threshold
pixel 0.54 0.78 0.47

cluster 0.66 0.90 0.60

Trained threshold
pixel 0.43 0.76 0.35

cluster 0.38 0.78 0.28

Clustering
BPDSC

Direct K-means (distance with best performance) 0.59 0.80 0.54
RFCM-Kmeans (distance with best performance) 0.62 0.83 0.57

RFCM-DoD-Kmeans
Average over parameters 0.60 0.80 0.56

Best parameters 0.64 0.89 0.57
Best average parameters 0.64 0.89 0.57

Automatic
nodal
region
identification

Direct K-means (distance with best performance) 0.48 0.78 0.40
RFCM-Kmeans (distance with best performance) 0.42 0.75 0.35

RFCM-DoD-Kmeans
Average over parameters 0.43 0.75 0.38

Best parameters 0.45 0.77 0.37
Best average parameters 0.46 0.77 0.37

Table 5.1: DSC comparison of different experimented methods: In terms of evaluation
involving cluster signals, ‘other clusters’ is used as it is more representative for the true
performance. Multiple experiments has been done on direct K-means and RFCM-Kmeans
with the different distance measures. Only the results with the best distance measure is
presented in this table.

or a suitable automatic group selection is used.

Additionally in Table 5.1, the average DSC of the fully automated process is lower

than the BPDSC of RFCM-DoD-Kmeans, which indicates that our current auto group

selection method failed to identify some of the separated nodal groups. Therefore, the

combination of RFCM-DoD-Kmeans and expert selection is currently the best method.

As we are performing the RFCM-DoD-Kmeans and final expert selection for now, we will

develop better auto selection method in the future.

5.4 Conclusion and discussion

This chapter described different pacemaking region identification methods including slope

value based thresholding, direct K-means clustering, RFCM-Kmeans and RFCM-DoD-

Kmeans. To evaluate performance of signal clustering algorithms in pacemaker detection, we

introduced the ‘best possible Dice similarity coefficient’ (BPDSC). We acquired the BPDSCs

of clustering algorithms and Dice similarity coefficients of slope value based thresholding by

comparing their results with manually labeled data.
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Slope value is a good feature for separating the nodal region and atrial region, if we

can find a ‘best’ threshold. However, it does not work well when we tried to acquire this

threshold based on other hearts under same temperature.

Among clustering based methods, RFCM-DoD-Kmeans method outperforms direct K-

means and RFCM-Kmeans significantly in high quality datasets given good set of parame-

ters. But the differences of them in all datasets or low quality datasets are only marginal.

This is probably due to the large variance of cardiac signal in ‘low quality’ datasets caused

by artifacts. Due to the limited amount of good data, we have not tested the robustness of

good parameters over different good datasets.

Additionally, we made an attempt to fully automate the clustering based identification

process, although its final result is not satisfactory. A better auto selection method remains

a topic for future research.



Chapter 6

Conclusion

6.1 Conclusion

This thesis has introduced a novel preprocessing pipeline for high throughput analysis of

zebrafish optical mapping data. The first step in the pipeline which involves spatial-temporal

averaging, drifting removal and scaling and cycle averaging. This successfully converted the

low SNR original OM data to a set of clear cardiac signals. Subsequently, these enhanced

signals were clustered to spatially connected patches using robust fuzzy c-means. Manual

labeling was performed on these patches. Next, activation time and resting slope value were

measured for signal in each pixel and statistically analyzed with the manual labels. Finally, a

novel automatic pacemaker identification method was proposed. Slope value-based method

utilized the fact that pacemaking cells have positive diastolic depolarization slope and used

thresholding on slope value to detect pacemaking regions. A novel RFCM-DoD-Kmeans

approach was used to divide the heart into several physiologically meaningful regions by

performing clustering on a transformed signal space.

Manual labeling was validated from three aspects: (1) structurally, regions with same

labels connected pieces; (2) functionally, labeled nodal regions have higher resting slope

value than labeled atrial regions and increasing slope over temperature is observed in labeled

nodal region; (3) part of the labeled pacemaking region coincide with the locations reported

in literature.

Automatic identification methods were evaluated based on manually labeled data and

performance of the slope value based method evaluated. A ‘best possible Dice similarity

coefficient’ (BPDSC) was proposed to measure the performance of clustering based methods.

57
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The proposed novel RFCM-DoD-Kmeans method was compared with slope value based

thresholding, direct K-means and RFCM-Kmeans. On ’high quality’ data, RFCM-DoD-

Kmeans gives satisfactory identification performance and outperforms other methods given

good set of parameters.

6.2 Primary contributions

The primary contributions of this thesis include:

• Introduced a novel cycle averaging method into preprocessing pipeline.

• Used RFCM as a novel pre-clustering step to reduce work load of manual labeling in

zebrafish OM data.

• Implemented measurement methods and performed statistical analysis on measured

values.

• Proposed a novel unsupervised signal grouping pipeline for pacemaking region identi-

fication.

These methods can be termed as ”computational instrumentation” and they will find

utility in high throughput quantitative analysis of optical mapping signals.

6.3 Future work

As a first attempt on pacemaking region identification from optical mapping data with a

signal analysis perspective, concepts and methods introduced in this thesis likely have many

possible future directions and applications.

6.3.1 Preprocessing

To reduce the mixing of different type of signals, methods that involves less spatial and

temporal averaging should be considered. Longer recording will increase the number of

cycles to be averaged and is therefore helpful for reducing spatial and temporal averaging.

Also, in preprocessing stage, signal averaging can be performed in a ‘bilateral’ fashion. This

means that averaging will happen if and only if they are close in both spatial and functional
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space, which is the space spanned by the signal vector. This is similar to the well known

bilateral filter [46] in image processing.

In the ‘low quality’ data, signals are mostly corrupted by motion artifacts although

chemical excitation-contraction uncoupler has already been used. Therefore, quantification

of motion artifacts is helpful. If we know the temporal interval that is likely corrupted by

motion, we can avoid making measurements in that interval and discard that part when

trying to do automatic identification.

6.3.2 Manual labeling

Due to the fact that our manual labeling is done on RFCM clusters, its consistency over

multiple runs needs to be validated. Multiple times of same expert labeling and labels from

multiple experts will help validating the intra-rater and inter-rater reliability respectively.

In addition, different clustering methods other than RFCM might be more robust across

multiple runs for this pre-clustering process.

6.3.3 Measurements

The current methods for measuring activation time and slope value is simple and needs be

validated. Activation time measurement might not be robust since it involves calculation

of a time derivative of the noisy signal. It may also provide poor temporal resolution since

our current camera frame rate is low. Hence, methods for obtaining sub-frame accuracy

of activation time are worth investigating. Currently, slope value calculation relies on fast

depolarization starting time measurements, and a fixed length interval for fitting the slope,

which might be unreliable under motion artifacts. Methods that are robust to the presence

of motion artifacts will help improve the measurement accuracy.

6.3.4 Automatic identification

For pacemaker identification, there are several aspects that can be further improved. Better

algorithm for threshold determination will improve the identification performance signifi-

cantly. For the proposed DoD transformation, its robustness under different ‘high quality’

datasets given same set of parameters needs to be tested when more ‘high quality’ data is

available Also, as the purpose of DoD is to bring the signals into metric space that reflects

the physiologically similarity under different deformation, a more suitable transformation for
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this purpose will boost the performance of the class of clustering-transformation-clustering

approaches. In addition, good automatic group selection method is desired for fully au-

tomating the nodal region identification procedure.

In addition, other than unsupervised clustering methods proposed in this thesis, super-

vised learning methods such as support vector machine [6] , random forests [7] and deep

learning [5] can be used and will likely give good identification performance given larger

amount of manually labeled data.



Appendix A

Diastolic Slope Ending Point

For a given signal, we want to find the ending point of depolarization slope. In this thesis,

the ending point is assumed to be the point furthest from the straight line connecting the

first and peak point, as illustrated in Figure A.1.
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Figure A.1: Illustration of calculating diastolic slope ending point.

We denote the signal as f(t), the first point as (t1st, f(t1st)), the peak point as (tpeak, f(tpeak))

and the wanted ending point as (tend, f(tend)). Given (t1st, f(t1st)) and (tpeak, f(tpeak)), the

equation for the straight line connecting them is:

(f(tpeak)− f(t1st))x+ (t1st − tpeak)y + (tpeakf(t1st)− t1stf(tpeak)) = 0 (A.1)

We also know that the the distance from a point (x0, y0) to the line Ax + By + C = 0

61
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is |Ax0+By0+C|√
A2+B2

, therefore we can calculate tend by equation 4.4:

tend = arg max
t1st<t<tactivation

|(f(tpeak)− f(t1st))t− (tpeak − t1st)f(t)− t1stf(tpeak) + tpeakf(t1st)|√
(f(tpeak)− f(t1st))2 + (tpeak − t1st)2

The ending point we found using this method is invariant to scaling of f(t) and t. To

prove this, we show that tend = αt0end, given the scaling of f(t) = βf0(t) and t = αt0.

tend = arg max
t1st<t<tactivation

|(f(tpeak)− f(t1st))t− (tpeak − t1st)f(t)− t1stf(tpeak) + tpeakf(t1st)|√
(f(tpeak)− f(t1st))2 + (tpeak − t1st)2

= arg max
αt01<t<αt

0
a

|(βf(αt0p)− βf(αt01))t− (αt0p − αt01)βf(t)− αt01βf(αt0p) + αt0pβf(αt01)|√
(βf(αt0p)− βf(αt01))2 + (αt0p − αt01)2

= arg max
αt01<t<αt

0
a

|(f(αt0p)− f(αt01))t− (αt0p − αt01)f(t)− αt01f(αt0p) + αt0pf(αt01)|

= α arg max
t01<t<t

0
a

|(f(αt0p)− f(αt01))αt− (αt0p − αt01)f(αt)− αt01f(αt0p) + αt0pf(αt01)|

= αt0end (A.2)

where t1, tp and ta represent t1st, tpeak and tactivation, respectively for saving space.
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